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Abstract: The application of a newly developed diagnostic method to a heli-
copter gearbox is demonstrated. This method is a pattern classifier which uses a
multi-valued influence matrix (MVIM) as its diagnostic model. The method ben-
efits from a fast learning algorithm, based on error feedback, that enables it to
estimate gearbox health from a small set of measurement-fault data. The MAVIM
method can also assess the diagnosability of the system and variability of the fault
signatures as the basis to improve fault signatures. This method was tested on
vibration signals reflecting various faults in an OH-58A main rotor transmission
gearbox. The vibration signals were then digitized and processed by a vibration
signal analyzer to enhance and extract various features of the vibration data. The
parameters obtained from this analyzer were utilized to train and test the perfor-
mance of the MYIM method in both detection and diagnosis. The result- indicate
that the MVIM method provided excellent detection results when the full range of
faults effects on the measurements were included in training, and it had a correc.
diagnostic rate of 95% when the faults were included in training.

Key Words: Detectic a; diagnosis; helicopter gearbox; pattern classification;
vibration signal processing

Introduction: Helicopter drive trains are significant contributors to both
maintenance cost and flight safety incidents. Drive trains comprise almost 30% of
maintenance costs aid 16% of mechanically related malfunctions that often result
in the loss of aircraft [6]. As sudh, it is crucial that faults be detected and diagnosed
in-flight so as to prevent loss of lives.

Fault diagnosis of helicopter gearboxes is based primarily on vibration monitoring
and extraction of features that relate to individual gearbox components. Therefore,
considerable effort has been directed toward the development of signal processing
techniques which can quantify such features through the parameters they esti-
mate (e.g., [13,151). For exampl.:, the crest factor of vibration, which represents

IThis paper is extracted from Reftrences [41 and [5]
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the peak-to-rms ratio of vibration, has been shown to increase with localized faults
such as tooth cracks [1]. However, due to the complexity of helicopter gearboxes
and the interaction between their various components, the individual parameters
estimated from vibration measurements do not provide a reliable basis for fault
detection and diagnosis.

As an alternative to single-parameter based diagnosis, fault signatures can be estab-
lished so as to consist of many parameters. For this purpose, pattern classification
techniques need to be employed [9,14]. Among the various pattern classifiers used
for diagnosis, artificial neural nets are the most notable due to their nonparametriz
natitie (i.e., independence of the probabilistic structure of the system), and their
ability to generate complex decision regions [16]. However, neural nets generally
require extensive training to develop the decision regions. In cases such as heli-
copter gearboxes, wL•.re adequate data may not available for training, neural nets
may produce false alarms, undetected faults, and/or misdiagnoses.

In this paper we demonstrate the application of a diagnostic method that ;an esti-
mate gearbox health based or! a small set of measured vibration data. This methad
uses nonparametric pattern classification in its model, so like artificial neural nets,
is independent of the probabilistic structure of the system. Moreover, it utilizes a
multi-valued influence matriz (MVIM) as its diagnostic model that provides indices
for diagnosability of the process and variability of the fault signatures [8]. These
indices are used as feedback to improve fault signatures through adaptation [7].

To test this method, vibration signals were collected at NASA. Lewis Research
Center as part of a joint NASA/Navy/Army Advanced Lubricants Program to
reflect the effect of various faults in an OH-58A main rotor transmission gearbox.
In order to identify the effect of faults on the vibration data, the vibration signals
obtained from five tests were digitized and processed by a vibration signal analyzer.
The parameters obtained from this signal analyzer were then utilized to train the
MVIM method and test Ats performance in both detection and diagnosis.

MVIM Method: Measurements .are processed in the V.IM method as
illustrated in Fig. 1: They are usually pre-processed first t, obtain a vector of
processed measurements P', then they are converted to binary numbers through
a flagging operation (i.e., abnormal measurements characterized by 1 and normal
ones by 0) to obtain a vector of flagged measurements Y, and fiaally they are
analyzed through the diagnostic model to produce fault vector X. The MVIM
method is explained in detail in [3] and [71, and its overall concept is briefly
discussed here for completeness.

Fault Signature Representation: Fault signatures in the MVIM method are
represented by the n uidt-length columns Vi E Z'm of a multi-valued inifluence
matrix (MVIM) A:

where m denotes the number of characteristic parameters processed from the raw
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Figure 1: Processing of measurements in the MVIM method.

data, and n reln,'!cents the number of different fault conditions, including the no-
fault conditiia,.

Diagnostic -,soning: In the MVIM method, the fault vector X which ranlks
the faults acco.1_-,g to their possibility of occurreince is defined by the closeness of
the influen,'e rtctor to the vector of flagged meesurements Y (see Fig. 2).

Y tL1

t•t

V22

Figure 2: Schematic of diagnostic reasoning in the MVIM method, illus-
trated in three dimensional space.

Fault Signature Evaluation: The influence vectors defined in Eq. (1) are not
known a-priori and need to be estimated. In the MVIM method, the error in
diagnosis is used as the basis to estimate/update the influence vectors. For this
purpose, the fault signatures are updated recursively after the occurrence of each
fault to minimize the sum of the squared diagnostic error associated with that
fault [8].

One of the unique features of the MVIM method is its ability to evaluate quanti-
tatively the uniqueness of the fault signatures as well as their variability, so that
these quantitative measures can be used to improve the flagging operation. In the

MVIM method, the uniqueness of fault signatures is characterized by the closeness
of pairs of influence vectors. For this purpose, a diagnosability matrix is defined
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to represent the closeness of the orientation of individual influence vectors [8], and
the index of diagnosability is defined as the smallest off-diagonal component of this
matrix so as to denote the closest pair of fault signatures.

In the MVIM method, the variability of fault signatures is defined by their variance.
For this purpose, the variance matrix associated with A is estimated to provide a
measure of the variations of individual components of the influence matrix. Since
in the MVIM method the components of A. are adjusted recursively, the variance
matrix can be readily estimated during training [7]. The index of fault signature
variability in the MVIM method is defined as the largest component of a variance
matrix which represents the variability in the components of matrix A.

Flagging Unit: The influence matrix A is estimated based on the values of
the flagged measurement rector Y. Thus, before the influence matrix is used for
diagnostic reasoning, the integrity of the flagging operation needs to be ensured.

Ideally, the measurements should be flagged such that no false alarms are produced,
all faults are detected, the fault signatures are as spread out as possible, and the
variability of flagged measurements for individual faults is minimized. To this end,
a Flagging Unit is designed so that it can )e tuned to achieve the above goals.
The Flagging Unit is tuned iteratively based on a training batch, where at the
end of each iteration the total number of false alarms and undetected faults are
counted and the uniqueness and variability of the fault signatures are obtained from
MVIM. This information is then used as feedback in the next iteration to improve
the performance of the Flagging Unit (see Fig. 3). Training stops when the total
number of false alarms and undetected faults are minimized, and the uniqueness
and repeatability of fault signatures are enhanced [7].

P Flagging Fault Signature False Alarms
P Uging Y sltSigatin Unde*ected Faults

Uniqueness Index
Variability Index

Figure 3: Iterative tuning of the Flagging Unit based on feedback from
itfs diagnostic model.

Ex~ierimentah: Vibration data was collected at NASA Lewis Researcih Cen-
ter to reflect the effect of various faults in an OH-58A main rotor transi. ,sion
gearbox [11]. The gearbox was tested in the NASA Lewis 500-hp helicopter trans
mission test stand providing an input torque level of about 3100 in-lbs and an
input speed of 6060 rpm. The configuration of the gearbox is shown in Fig. 4. The
vibration signals were n.easured by eight piezoelectric accelerometers (frequuntmy
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range of up to 10 kHz), and an FM tape recorder was used to record the signals
periodically once every hour, for about one to two minutes per recording (at the
tape speed of 30 in/sec, providing a bandwidth of 20 kHz). Two chip detectors
were also mounted inside the gearbox to dete-dt the debris caused 1)y component
failures The location and orientation of the accelerometers are shov n in Fig. 5.

Planet Bearng

Ring Gear Spiral Bevel

Spiral Bevel Pinion

Sun Gear Triplex Bearirg

Gear Roller Bearing A-
Mast Robiar im B ng Pinion Roller Bearing

Duplex Bearing

Figure 4: Configuration of the OH-58A main rotor transmission gearbox.

During the experiments, the gearbox was disassembled/checked periodically cr
when onc of the chip detectors indicated a failure- A total of five tests were per-
formed, where each test was run between nin- to fifteen days for approximatel:,"
four to eight hours a day. Among the eight failures which occurred during these
tests, there were three cases of planet bearing failure, three cases of sun gear failure,
two cases of top housing cover crack, and one case each of spiral bevel pinion, mast
bearing, and planet gear failure (see Table 1). Insofar as fault detection during
these tests, the chip detectors were reliable in detecting failures in which a signifi-
cant amount of debris was generated, such as the planet bearing failures and one
sun gear failure. The remaining failures were detected during routine disassembly
and inspection.

Signal Processing: In ord-r to identify the effect of faults on the vibration
data, the vibration signals obtained from the five tests were digitized and proce.sed
by a commercially available signal analyzer [17]. For analysis purposes, only one
data record per day was used for e,.ch test, These data records were taken at the
beginning of the day unless a fault was reported, which in that case, the record
taken right before the fault incident was selected to ensure that the data record
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#1, 2, 3 attached to block on right trunnion mount
#4, 6, 7, 8 studded to housing through steel Inserts
#5 attached to block on Input housing

Left trunnion mount

0 Transverse

0---0 Longitudinal

Right trunnion moun

Transmission output• "

$Vertical
Transisson I1n Ut Longitudinal

Figure 5: Location of the accelerometers on the test stand.

reflected the fault. Also, in order to reduce estimation errors, each data record was
partitioned into sixteen seg.nents and parameters were estimated for each segment
and averaged over these segments. A total of fifty-four parameters were obtained,
of which nineteen parameters were obtained for statistical analysis, baseband power
spectrum analysis, and bearing analysis. The other thirty-five parameters reflected
the various features of signal averaged data (seven parameters for each of the five
gears) [2].

Implementation: As explained epxlier, the MVIM method requires a sAt
of measurements during normal operation and at fault incidents to estimate tne
no-fault and fault signatures. The parameters obtained from the signal analyzer
were utilized to evaluate the performance of the MVIM method, first in detection
and then in diagnosis.
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Test # Number of Days I Failures
1 9 Sun gear tooth spall

Spiral bevel pinion scoring/heavy wear
2 9 None
3 13 Planet bearing inner race spall

Top cover housing crack
Planet bearing inner race spall
Micropitting on mast bearing

4 15 Planet bearing inner race spall
Sun gear tooth pit

5 11 Sun gear teeth spalls
Planet gear tooth spall

o'bp housing cover crack

'fable 1: FD, Alts occurred during the experimentk

Fault Detection: The mean values of the nineteen "non-signal averaged" pa-
rameters were used as the components of the measurement vector P (see Fig. 1)
to train and test the MVIM method in detection. Since signal averaging is usually
time consuming and may not be suitable for on-line detection [12]. the thirty-five
"signal averaged" parameters were not utilized for detection. For scaling purposes,
each parameter value was normalized with respect to the value of the parameter
on the first day of each test. Since in the experiments the exact time of fault
was not known, the exact times for the fault incidents of the five tests needed to
be established before the measurements could be used for training and testing the
MVIM. For this purpose, Kohonen'., feature mapping [10], an unsupervised learning
algorithm, was first used to classif5 individual parameters into no-fault ane. fault
cases. The cxact time of fault incidents was then established through correlating
these parameters with the iaults which had been detected in each test [2]. The
status of various faults during the five tests are shown in Table 2.

The effectiveness of the MVIM method in detection was evaluated with various
training sets. For this purpose: training sets were fornmed based on paramneters
from various combinations of the five tests (see Table 3). The MVIM was tested,
however, based on the parameters from all of the five tests. For each training
case, the MVIM was iteratively trained until perfect detection was achieved within
the training set (i.e., no false alarm or undetected fault was found in the training
set). Note that the MVIM trained for detection contains only two columns, one
representing the no-fault signature and the other representing the fault signature.
The detection results produced by the MVIM for eighteen different cases of training
are shown in Table 3. For comparison, the results obtained from the MVIM method
are contrasted against the results obtained from a multilayer neural net which was
trained and tested under the same conditions. Performance of these detection
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Fault Status
Day Test #1 Test #2 Test #3 Test #4 Test #5

1 XO XO Xo 0o Xo

2 Xo Xo Xo Xo Xo
3 X£ Xo x2 Xo Xo

4 xo Xo 02 £o Xo

5 X4 Xo Xo Xo xo

6 X4 Xo Xo To £o

7 X4 Xo XO Xo X3

8 X4 Xo Xo Xo X3

9 X41XI O X3 XO X3

10 £o 0o X3, £I

11 X2 X2 X3, XI, X 5

12 X2 X2

13 £6 Xo
14 XI
15 _x

Table 2: Association of data from each Gay of the five tests with no-
fault and various fault cases. The no-fault case is denoted as
£o and the six faults are represented as xj: sun gear failure,
X2: planet bearing failure, £3: housing craick, £4: spiral bevel
pinion failure, :s: planet gear failure, x6: mast bearing failure.

methods are represented by the total number of false alarms and undetected faults
they produced during testing (denoted as "Total Test Errors" in Table 3).

The results in Table 3 indicate that the MVIM was able to provide perfect detection
when faults were fully represented by the training sets (i.e., Cases #10, #11, #13,
#16, #17, and #18), and that it produced better results than the Net in most
of the cases. Specifically, the MVIvI produced better results in twelve of the test
cases, produced identicei results in five cases, and was outperformed in only one
case. Upon a casual inspection of the training sets that enabied MVIM to perform
perfect detection, it can be observed that Tests #3 and #4 were included in all of
them. This implies that the MVIM needed the parameters from these two tests
to establish an effective pair of signatures for no-fault and fault cases. Note that
without Test #3, the MVIM produced one undetected fault and one false alarn
(Case #15), and without Test #4 it produced one undetected fault (Case #14).
Note that the Net could not provide perfect detection even when trained with all
of the five tests (Case #18).
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Case # Training Diagnostic Undetected False Total
Data Sets Method Faults Alarms Test Errors

1 1 Net 4 0 4
MVIM 1 3 4

2 5 Net 1 2 3
MVIM 3 2 5

3 1,2 Net 4 0 4
1MVIM 2 2 4

4 1,3 Net 1 2 3
MVIM 2 0 2

5 2,5 Net 3 2 5
MVIM 3 2 5

6 3,4 Net 2 2 4
MVIM 0 0 0

7 3,5 Net 0 3 3
MVIM 1 0 1

8 4,5 Net 3 0 3
MVIM 1 1 2

9 1,2,5 Net 1 2 3
MVIM 1 2 3

10 1,3,4 Net 1 0 1
_ MVIM 0 0 0

11 2,3,4 Net 2 0 2
MVIM 0 0 0

12 2,3,5 Net 1 2 3
MVIM 1 0 1

13 1,2,3,4 Net 2 0 2
MV!M 0 0 0

14 1,2,3,5 Net 2 1 3
MVIM 1 0 1

15 1,2,4,5 Net 1 1 2
1 MVIM 1 1 2

16 1,3,4,5 Net 1 0 1
MVIM 0 0 0

17 2,3,4,5 Net 2 0 2
1 MVIM 0 0 0

18 1,2,3,4,5 Net 1 0 1
I L MVIM 0 0 0

Table 3: Detection results obtained from MVIM and a multilayer neural
net when trained with different data sets.
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Fault Diagnosis: All of the fifty-four parameters obtained from the signal ana-
lyzer were used to train and test the MVIM in diagnosis. The configuration of the
MVIM as applied to fault diagnosis of the OH-58A gearbox is illustrated in Fig. 6.
As shown in this figure, two MVIMs were used for each accelerometer. One MVIM
to perform detection (i.e., to determine whether a fault had occurred or not), and
a diagnostic MVIM to isolate the fi:alt. The detection MVIM contained only two
columns to characterize the no-fault and fault signatures, whereas the diag-nostic
MVIM contained seven columns, one characterizing the no-fault signature and the
other six representing the signatures of individual faults (see Table 2). Note that
the two MVIMs can be perceived as filters with different resolutions. Test #3 and
#4 contained most of the failure modes (i.e., four out of six). Therefore, the pa-
rameters from these two tests were used to train the MVIMs. Note that not all of
the failure modes were included in training, so the test results were not expected
to be perfect. For training the detection MVIMs, signal averaged parameters were
excluded because it had already been established that the nineteen non-signal aver-
aged parameters were adequate for detection. For training the diagnostic MVIMs,
however, all of the fifty-four parameters were utilized. A maximum of fifty itera-
tions were used for training both the detection and diagnostic MVIMs.

Acc #1 Acc #2 Acc #8

* Detection Detection DetectionMV
MVIM MVIM MI

Yes No Yes No Yes No

ciost c Diagn~ostic * * * * * Digostic

Voting Scheme

X

Figure 6: Configuration of the MVIM system as applied to the OH-58A
main roto,- transmission.

Individual MVIMs were considered converged when they produced perfect detec-
tion/diagnostics within the training set. The number of epochs for the convergence
of the eight detection MVIMs were: 8, 5, 50, 37, 50, 15, 50, and 50 for accelerom-
eters #1 to #8, respectively, whereas for the eight diagnostic MVIMs they were:
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50, 1, 2, 2, 50, 50, 50, and 50. Based on the number of epochs used for individual
MVIMs, it is clear that Lhe detection MVIMs associated with accelerometers #3.
#5, #7, and #8 did not achieve perfect detection within the training set. Simi-
larly, the diagnostic MVIMs associated with accelerometers #1, #5, #6, #7, and
#8 did not achie :e perfect diagnosis within the training set.

The performance of the trained MVIMs were next evaluated for all of the five tests.
For this purpose, the nineteen parameters from each of the eight accelerometers
were first passed through the corresponding detection MVIM to reflect the occur-
rence of faults. Once the presence of a fault was indicated by a detection MVIM,
the seý of fifty-four parameters from that accelerometer was passed through the
corresponding diagnostic MVIM to isolate the fault. Finally, the diagnostic results
obtained from the eight diagnostic MVIMs were consolidated by a voling scheme.
This voting scheme was designed based on assigning weights to individual fault
signatures based on their speed of convergence in training, such that larger weights
were assigned to those influence vectors which converged faster and vice versa.
Zero weights were assigned to the influence vectors which did not converge during
training; ur.ity weights were assigned to thcce which converged within one epoch.

The diagnostic results obtained from the diagnostic system for all of the five tests
are shown in Table 4, with the. actual faults indicated inside parentheses. The
results indicate that the MVIM system was able to produce perfect diagnostics for
Tests #3 and #4, on which it was trained, and that it provided a correct diagnostic
rate of 88% for all of the tests. Specifically, the results in Table 4 indicate that
the MVIM system produced two falsc. alarms (on day 4 of Test #1 and day 6 of
Test #5), and five misdiagnoses (on daye 5-8 of Test #1 and day 11 of Test #5). In
addition, this system produced equal diagnostic certainty measures for the no-fault
case (x0 ) and sun gear failure (xi) on day 10 of Test #5, and could only diagnose
one of the faults on day 9 of Test #1 and on days 10 and 11 of Test #5. However,
it should be noted that faults x4 and x5 were not included in training, so no fault
signatui-es were estimated for them. The correct diagnostic ratte of 11VI4, with
these two faults excluded would be over 95%, which is quite good considering that
the MVIM system was trained on a small set of measurement-fault data with very
few repetitions of each fault.

Summary of Results: An efficient fault detection/diagnostic system based
on the MVIM method was applied to an OH-58A main rotor transmission gearbox.
Detection results indicate that this system provided perfect detection when the full
range of faults effects were inciuded in training. Diagnostic results indicate that
the syatem achieved a correct diagnostic rate of 95% despite very few repetitions
of each fault.
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Estimated Fault Status
Day Test #1 Test #2 Test #3 Test #4 Test, #5

1 £o (Xo) =o (Xo) £0 (Xo) Xo (£o) Xo (Xo)
2 xo (xo) £o (xo) zo (;oe) xo (Xo) xo (@o)
3 -o (Xo) £o (Xo) X2 (X2) Xo (Xo) £o (.O)

4 :3 (X0) Xo (Xo) £2 (£2) £o (Xo) £o (X0)
5 X3 (X4) £o (xo) £o (Xo) Xo (£o) £o (Xo)
6 X3 (X4) Xo (XO) £o (Xo) =o (Xo) X6 (Xo)

7 X3 (•41 To (Xo) XC (Xo) Xo (XO) X3 (X3)
8 X3 (-T) .Co (Xo) Xo (Xo) Xo (Xo) X3 (X3)
9 X, (X4,XI) Xo (£0o) Z3 (X3) £o (£o) X3 (X3)

10 £o (Xo) Xo (XO) x-o,X, (X3,£X)

11 X2 (X2) £2 (X2) X2,X6 (X3, X6, XS)

12 X2 (£2) X2 (X2)

13 £6 ( £0) Xo (£o)

14 =, (XI)
15 __ (XI)

Table 4: Estimated faults for each day of the five tests. The actual faults
(inside parenthesis) are also included for comparison. The xi
are the same as indicated in Table 2.
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